Retrovirus-mediated expression of the base excision repair proteins, formamidopyrimidine DNA glycosylase or human oxoguanine DNA glycosylase, protects hematopoietic cells from N,N',N"-triethylenethiophosphoramide (thioTEPA)-induced toxicity in vitro and in vivo.
نویسندگان
چکیده
Modulation of DNA damage repair activity could lead to new approaches to reduce cytotoxic side effects of chemotherapy. N,N',N"-Triethylenethiophosphoramide (thioTEPA) induces the formation of amino-ethyl adducts of guanine, resulting in imidazole ring opening [formamidopyrimidine (Fapy)] and is associated with significant myelosuppression in dose-intensive therapies. In Escherichia coli, Fapy lesions are repaired by the Fapy-DNA glycosylase (Fpg) protein. We hypothesized that the expression of the Fpg could increase resistance of hematopoietic cells to thioTEPA-induced cytotoxicity. Expression of Fpg in bone marrow (BM) cells via a retrovirus vector was associated with demonstrable 8-oxodeoxyguanosine DNA glycosylase activity. BM cells were infected with a recombinant retrovirus, SF91, containing the Fpg gene and expressing the enhanced green fluorescence protein (EGFP) via an internal ribosomal entry site element. Control mice received BM transduced with the backbone containing IRES-EGFP alone. Fpg-transduced and GFP+ BM hematopoietic cells were resistant in vitro to thioTEPA at multiple concentrations. Mice transplanted with transduced cells were treated with four doses of thioTEPA (10 mg/kg) given over 7 weeks. Despite low transduction efficiency, peripheral blood leukocytes, hemoglobin, and platelet counts of thioTEPA-treated Fpg mice were significantly higher than treated control mice (P < 0.05). In addition, after treatment, the BM, spleen, and thymic cellularity as well as the number of GFP+ progenitor cells in the BM of treated mice were significantly higher than those of control group. Selection of Fpg-transduced cells in vivo was demonstrated by an increase in the mean fluorescence intensity of peripheral mononuclear cells of Fpg mice compared with pretreatment value. In addition, a significant increase in the EGFP-bright cells was demonstrated, suggesting preferential survival of high-expressing hematopoietic cells. Similar results were demonstrated in vitro with primary BM expressing the human functional counterpart of Fpg, OGG1. These results show that expression of the Fpg or hOGG1 protein protects hematopoietic cells from thioTEPA-induced DNA damage and suggest that a high level of expression of these repair proteins is required to establish resistance to this drug. Expression of Fpg and/or OGG1 may provide an novel approach to preventing thioTEPA-induced toxicity of primary hematopoietic cells.
منابع مشابه
Aflatoxin B1 formamidopyrimidine adducts are preferentially repaired by the nucleotide excision repair pathway in vivo.
Aflatoxin B(1) (AFB(1)), the most potent member of the aflatoxin family of hepatocarcinogens, upon metabolic activation reacts with DNA and forms a population of covalent adducts. The most prevalent adduct, 8,9-dihydro-8-(N(7)-guanyl-)-9-hydroxyaflatoxin (AFB(1)-N(7)-dG), as well as the AFB(1) formamidopyrimidine adduct (AFB(1)-FAPY), resulting from imidazole ring opening of the major adduct, a...
متن کاملThe mouse ortholog of NEIL3 is a functional DNA glycosylase in vitro and in vivo.
To protect cells from oxidative DNA damage and mutagenesis, organisms possess multiple glycosylases to recognize the damaged bases and to initiate the Base Excision Repair pathway. Three DNA glycosylases have been identified in mammals that are homologous to the Escherichia coli Fpg and Nei proteins, Neil1, Neil2, and Neil3. Neil1 and Neil2 in human and mouse have been well characterized while ...
متن کاملA novel fluorometric oligonucleotide assay to measure O( 6)-methylguanine DNA methyltransferase, methylpurine DNA glycosylase, 8-oxoguanine DNA glycosylase and abasic endonuclease activities: DNA repair status in human breast carcinoma cells overexpressing methylpurine DNA glycosylase.
DNA repair status plays a major role in mutagenesis, carcinogenesis and resistance to genotoxic agents. Because DNA repair processes involve multiple enzymatic steps, understanding cellular DNA repair status has required several assay procedures. We have developed a novel in vitro assay that allows quantitative measurement of alkylation repair via O(6)-methylguanine DNA methyltransferase (MGMT)...
متن کاملAntimutagenic specificities of two plant glycosylases, oxoguanine glycosylase and formamidopyrimidine glycosylase, assayed in vivo.
The base-excision repair process protects genomes by removing and replacing altered bases in DNA. Two analogous glycosylases, oxoguanine glycosylase (OGG) and formamidopyrimidine glycosylase (FPG), can start the process by removing oxidized guanine, the most common modification that leads to misreading of DNA. Plants possess genes for both types of glycosylases. We have tested the hypothesis th...
متن کاملBase excision repair of reactive oxygen species-initiated 7,8-dihydro-8-oxo-2'-deoxyguanosine inhibits the cytotoxicity of platinum anticancer drugs.
Anticancer therapy with cisplatin and oxaliplatin is limited by toxicity and onset of tumor resistance. Both drugs form platinum-DNA cross-linked adducts, and cisplatin causes oxidative DNA damage including the 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG) lesion. To assess oxidative DNA damage as a mechanism of cisplatin and oxaliplatin cytotoxicity, 8-oxodG-directed base excision repair was s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 61 13 شماره
صفحات -
تاریخ انتشار 2001